top of page

Research References

Microbubbles, Nanobubbles

  • Tsuge, H. Micro- and Nanobubbles: Fundamentals and Applications. (Pan Stanford Publishing, 2014).

  • Ebina, K. et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PloS one 8, e65339 (2013).

  • Agarwal, A., Ng, W. J. & Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84, 1175-1180 (2011).

  • Yang, S. & Duisterwinkel, A. Removal of nanoparticles from plain and patterned surfaces using nanobubbles. Langmuir 27, 11430-11435 (2011).

  • Wen, D. Intracellular hyperthermia: Nanobubbles and their biomedical applications. International Journal of Hypothermia 25, 533-541 (2009).

  • Bunkin, N. F., Yurchenko, S. O., Suyazov, N. V. & Shkirin, A. V. Structure of the nanobubble clusters of dissolved air in liquid media. Journal of biological physics 38, 121-152 (2012).

  • Craig, V. S. J. Very small bubbles at surfaces—the nanobubble puzzle. Soft Matter 7, 40- 48 (2011).

  • Ohgaki, K., Khanh, N. Q., Joden, Y., Tsuji, A. & Nakagawa, T. Physicochemical approach to nanobubble solutions. Chem Eng Sci 65, 1296-1300 (2010).

  • Häbich, A., Ducker, W., Dunstan, D. E. & Zhang, X. Do stable nanobubbles exist in mixtures of organic solvents and water? The Journal of Physical Chemistry B 114, 6962- 6967 (2010).

  • Chaplin, M. Water Structure and Science: Nanobubbles. (2015).

  • Kikuchi, K. et al. Concentration determination of oxygen nanobubbles in electrolyzed water. Journal of colloid and interface science 329, 306-309 (2009).

  • Seddon, J. R., Lohse, D., Ducker, W. A. & Craig, V. S. A deliberation on nanobubbles at surfaces and in bulk. ChemPhysChem 13, 2179-2187 (2012).

  • Attard, P., Moody, M. P. & Tyrrell, J. W. Nanobubbles: the big picture. Physica A: Statistical Mechanics and its Applications 314, 696-705 (2002).

  • Brenner, M. P. & Lohse, D. Dynamic equilibrium mechanism for surface nanobubble stabilization. Physical review letters 101, 214505 (2008).

  • Xue-Hua, Z., Gang, L., Zhi-Hua, W., Xiao-Dong, Z. & Jun, H. Effect of temperature on the morphology of nanobubbles at mica/water interface. Chinese Physics 14, 1774 (2005).

  • Petsev, N. D., Shell, M. S. & Leal, L. G. Dynamic equilibrium explanation for nanobubbles' unusual temperature and saturation dependence. Physical Review E 88, 010402 (2013).

  • Attard, P. The stability of nanobubbles. The European Physical Journal Special Topics, 1-22.

  • Seddon, J. R., Zandvliet, H. J. & Lohse, D. Knudsen gas provides nanobubble stability. Physical review letters 107, 116101 (2011).

  • PANDEY, P. K., JAIN, A. & DIXIT, S. Micro and nanobubble water. Int. J. Eng. Sci. Technol 4, 4734-4738 (2012).

  • Li, D., Jing, D., Pan, Y., Wang, W. & Zhao, X. Coalescence and Stability Analysis of Surface Nanobubbles on the Polystyrene/Water Interface. Langmuir 30, 6079-6088 (2014).

  • Matsuki, N. et al. Oxygen supersaturated fluid using fine micro/nanobubbles. International journal of nanomedicine 9, 4495 (2014).

  • Li, P. & Tsuge, H. Water treatment by induced air flotation using microbubbles. Journal of chemical engineering of Japan 39, 896-903 (2006).

  • Oliveira, C., Rodrigues, R. & Rubio, J. A new technique for characterizing aerated flocs in a flocculation–microbubble flotation system. International Journal of Mineral

  • Chu, L.-B. et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemo-sphere 68, 1854-1860 (2007).

  • Onari, H. Development and current issues in microbubble technology. Clean Technol 17,1-5 (2007).

  • Chu, L.-B., Xing, X.-H., Yu, A.-F., Sun, X.-L. & Jurcik, B. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Safety and Environmental Protection 86, 389-393 (2008).

  • Miyamoto, M. et al. Degreasing of solid surfaces by microbubble cleaning. Japanese journal of applied physics 46, 1236 (2007).

  • Barak, M. & Katz, Y. Microbubbles: pathophysiology and clinical implications. CHEST Journal 128, 2918-2932 (2005).

  • Unger, E. C. et al. Therapeutic applications of microbubbles. European journal of radiology 42, 160-168 (2002).

  • Ferrante, A. & Elghobashi, S. Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. Journal of Fluid Mechanics 543, 93-106 (2005).

  • Madavan, N., Merkle, C. & Deutsch, S. Numerical investigations into the mechanisms of microbubble drag reduction. Journal of Fluids Engineering 107, 370-377 (1985).

  • BURNS, P. N., WILSON, S. R. & SIMPSON, D. H. Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. Investigative radiology 35, 58 (2000).

  • Hohmann, J., Albrecht, T., Hoffmann, C. & Wolf, K.-J. Ultrasonographic detection of focal liver lesions: increased sensitivity and specificity with microbubble contrast agents. European journal of radiology 46, 147-159 (2003).

  • Blomley, M. J., Cooke, J. C., Unger, E. C., Monaghan, M. J. & Cosgrove, D. O. Science, medicine, and the future: Microbubble contrast agents: a new era in ultrasound. BMJ: British Medical Journal 322, 1222 (2001).

  • Hettiarachchi, K., Talu, E., Longo, M. L., Dayton, P. A. & Lee, A. P. On-chip generation
    of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7, 463-468 (2007).

  • Zimmerman, W. B. Microbubbles Keep Green Energy Blooming. advantage, 44 (2011).

  • Luttrell, G., Weber, A., Adel, G. & Yoon, R. Microbubble flotation of fine coal. Column Flotation 88, 205-211 (1988).

  • Himuro, S. D., T. et. al. Effects of Microbubbles on Bacteria. Progress in Multiphase Flow Research 4, 95-102 (2009).

  • Choi, Y. J., Park, J. Y., Kim, Y. J. & Nam, K. Flow characteristics of microbubble suspensions in porous media as an oxygen carrier. Clean–Soil, Air, Water 36, 59-65 (2008).

  • LYU, Y., LIU, C. & WU, K.-h. Characteristics of microbubble's shrinkage in microbubble aeration. Hebei Journal of Industrial Science and Technology 6, 001 (2012).

  • Turner, W. Microbubble persistence in fresh water. The Journal of the Acoustical Society of America 33, 1223-1233 (1961).

  • Chaplin, M. F. The memory of water: an overview. Homeopathy 96, 143-150 (2007).

  • O'Brian, J.-P. Improved Characterisation and Modelling of Microbubbles in Biomedical Applications PhD thesis, University College, (2013).

  • Li, P., Takahashi, M. & Chiba, K. Degradation of phenol by the collapse of microbubbles. Chemosphere 75, 1371-1375 (2009).

Skin Heath , Metabolism, Wounds & Burns

  • Basra, M. K. & Shahrukh, M. Burden of skin diseases. (2009).

  • Bickers, D. R. et al. The burden of skin diseases: 2004: A joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. Journal of the American Academy of Dermatology 55, 490-500 (2006).

  • Markova, A. & Mostow, E. N. US skin disease assessment: ulcer and wound care. Dermatologic clinics 30, 107-111 (2012).

  • Hess, C. T. Skin and Wound Care. (Lippincott Williams & Wilkins, 2008). Liedberg, N. C.-F., Reiss, E. & Artz, C. P. The effect of bacteria on the take of split thickness skin grafts in rabbits. Annals of Surgery 142, 92 (1955).

  • Association, A. B. Burn incidence and treatment in the US: 2000 fact sheet. Chicago: ABA (2000).

  • Brigham, P. A. & McLoughlin, E. Burn incidence and medical care use in the United States: estimates, trends, and data sources. Journal of Burn Care & Research 17, 95-107(1996).

  • Monafo, W. W. Initial management of burns. New England Journal of Medicine 335,1581-1586 (1996).

  • Munster, A., Smith-Meek, M. & Sharkey, P. The effect of early surgical intervention on mortality and cost-effectiveness in burn care, 1978-91. Burns 20, 61-64 (1994).

  • Herndon, D. N. Total burn care. 4th edn, (Saunders Elsevier, 2012).

  • Hur, J. et al. Inflammatory Cytokines and Their Prognostic Ability in Cases of Major Burn Injury. Annals of laboratory medicine 35, 105-110 (2015).

  • Subrahmanyam, M. A prospective randomized clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine. Burns 24, 157-161 (1998).

  • Queen, D., Evans, J., Gaylor, J., Courtney, J. & Reid, W. Burn wound dressings—a review. Burns 13, 218-228 (1987).

  • Eming, S. A., Krieg, T. & Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127, 514-525 (2007).

  • Leaper, D. J. & Harding, K. G. Wounds: biology and management. (Oxford University Press, USA, 1998).

  • Epstein, F. H., Singer, A. J. & Clark, R. A. Cutaneous wound healing. New England Journal of Medicine 341, 738-746 (1999).

  • Widgerow, A. D. Cellular resolution of inflammation—catabasis. Wound Repair and Regeneration 20, 2-7 (2012).

  • Wolcott, R., Kennedy, J. & Dowd, S. Regular debridement is the main tool for maintaining a healthy wound bed in most chronic. J Wound Care 18, 54 (2009).

  • Schultz, G., Phillips, P., Yang, Q. & Stewart, P. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. Journal of wound care 19, 320 (2010).

  • Trengove, N. Bacteriology of wounds. Current Therapeutics 41, 33 (2000).

  • Siddiqui, A. R. & Bernstein, J. M. Chronic wound infection: facts and controversies. Clinics in dermatology 28, 519-526 (2010).

  • Edwards, R. & Harding, K. G. Bacteria and wound healing. Current opinion in infectious diseases 17, 91-96 (2004).

  • Wolcott, R. D., Rhoads, D. D. & Dowd, S. E. Biofilms and chronic wound inflammation.

  • J Wound Care 17, 333-341 (2008).

  • Roy, S. et al. Mixed‐ species biofilm compromises wound healing by disrupting epidermal barrier function. The Journal of pathology 233, 331-343 (2014)

  • James, G. A. et al. Biofilms in chronic wounds. Wound Repair and Regeneration 16, 37-44 (2008).

  • Davis, S. C. et al. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair and Regeneration 16, 23-29 (2008).

  • Luedtke-Hoffmann, K. A. & Schafer, D. S. Pulsed lavage in wound cleansing. Physical Therapy 80, 292-300 (2000).

  • Sussman, C. & Bates-Jensen, B. M. Wound care: a collaborative practice manual for physical therapists and nurses. (Aspen Publishers Gaithersburg, MD, 1998).

  • Subrahmanyam, M. A prospective randomized clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine. Burns 24, 157-161(1998).

  • Helfman, T., Ovington, L. & Falanga, V. Occlusive dressings and wound healing. Clinicsin dermatology 12, 121-127 (1994).

  • Bolton, L., Monte, K. & Pirone, L. Moisture and healing: beyond the jargon.Ostomy/wound management 46, 51S-62S; quiz 63S-64S (2000).

  • Bowler, P., Jones, S., Davies, B. & Coyle, E. Infection control properties of some wound dressings. Journal of wound care 8, 499-502 (1999).

  • Queen, D., Evans, J., Gaylor, J., Courtney, J. & Reid, W. Burn wound dressings—a review. Burns 13, 218-228 (1987).

  • Armstrong, D. G. & Lavery, L. A. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomized controlled trial. Lancet 366, 1704 (2005).

  • Thompson, J. T. & Marks, M. W. Negative pressure wound therapy. Clinics in plastic surgery 34, 673-684 (2007).

  • Gregor, S. et al. Negative pressure wound therapy: a vacuum of evidence? Archives of Surgery 143, 189 (2008).

  • Gasbarro, R. Negative pressure wound therapy: a clinical review. Wounds 19 (2007).

  • Jerome, D. Advances in negative pressure wound therapy: the VAC instill. Journal of Wound Ostomy & Continence Nursing 34, 191-194 (2007).

  • Fries, R. B. et al. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 579, 172-181 (2005). 

  • Banin, E., Brady, K. M. & Greenberg, E. P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Applied and environmental microbiology 72, 2064-2069 (2006).

  • Burmølle, M., Ren, D., Bjarnsholt, T. & Sørensen, S. J. Interactions in multispecies biofilms: do they actually matter? Trends in microbiology 22, 84-91 (2014).

  • Römling, U. & Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of internal medicine 272, 541-561 (2012).

  • Macià, M. D., Rojo‐ Molinero, E. & Oliver, A. Antimicrobial susceptibility testing in biofilm‐ growing bacteria. Clinical Microbiology and Infection 20, 981-990 (2014).

  • Grumbein, S., Opitz, M. & Lieleg, O. Selected metal ions protect Bacillus subtilis biofilms from erosion. Metallomics 6, 1441-1450 (2014).

  • Gorur, A., Lyle, D. M., Schaudinn, C. & Costerton, J. W. Biofilm removal with a dental water jet. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995) 30, 1- 6 (2009).

  • Banin, E., Brady, K. M. & Greenberg, E. P. Chelator-induced dispersal and killing ofPseudomonas aeruginosa cells in a biofilm. Applied and environmental microbiology 72, 2064-2069 (2006).

Oxygen

  • Schreml, S. et al. Oxygen in acute and chronic wound healing. British Journal of Dermatology 163, 257-268 (2010).

  • Sharp, G. & Secombes, C. The role of reactive oxygen species in the killing of the bacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages. Fish & Shellfish Immunology 3, 119-129 (1993).

  • Dauphinee, D. M. Hyperbaric Oxygen vs Topical Oxygen: why are we still comparing the two? Podiatric Medical Association Texas (2013).

  • Stephens, F. O. & Hunt, T. K. Effect of changes in inspired oxygen and carbon dioxide tensions on wound tensile strength: an experimental study. Annals of Surgery 173, 515 (1971).

  • Ebina, K. et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PloS one 8, e65339 (2013).

  • Kawashima, M. et al. [abstract] Irrigation therapy using ozone nanobubble water in conjunction with hyperbaric oxygen therapy. (2011).

  • Choi, Y. J., Park, J. Y., Kim, Y. J. & Nam, K. Flow characteristics of microbubble suspensions in porous media as an oxygen carrier. Clean–Soil, Air, Water 36, 59-65 (2008).

  • Kikuchi, K. et al. Concentration determination of oxygen nanobubbles in electrolyzed water. Journal of colloid and interface science 329, 306-309 (2009).

  • Glazer, B. T., Marsh, A. G., Stierhoff, K. & Luther, G. W. The dynamic response of optical oxygen sensors and voltammetric electrodes to temporal changes in dissolved oxygen concentrations. Analytica Chimica Acta 518, 93-100 (2004).

  • Montgomery, H., Thom, N. & Cockburn, A. Determination of dissolved oxygen by the Winkler method and the solubility of oxygen in pure water and sea water. Journal of Applied Chemistry 14, 280-296 (1964).

  • Culberson, C. H., Knapp, G. P., Stalcup, M. C., Williams, R. T. & Zemlyak, F. A comparison of methods for the determination of dissolved oxygen in seawater. (1991).

  • Knapp, G. P., Stalcup, M. C. & Stanley, R. J. Dissolved oxygen measurements in seawater at the Woods Hole Oceanographic Institution. (Woods Hole Oceanographic Institution, 1989).

  • Truesdale, G. & Downing, A. Solubility of oxygen in water. (1954).

  • Tromans, D. Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy 48, 327-342 (1998).

  • U.S. Geological Survey, Change to solubility equations for oxygen in water: Office of Water Quality Technical Memorandum 2011.03. (2011).

  • Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: Better fitting equations. Limnology and oceanography 37, 1307-1312 (1992).

  • Carpenter, J. H. THE ACCURACY OF THE WINKLER METHOD FOR DISSOLVED OXYGEN ANALYSIS1. Limnology and oceanography 10, 135-140 (1965).

  • The Dissolved Oxygen Handbook - YSI, inc.

  • Kanwisher, J. Polarographic Oxygen Electrode. Limnology and oceanography 4, 210-217 (1959).

  • Clark, L. C., Wolf, R., Granger, D. & Taylor, Z. Continuous recording of blood oxygen tensions by polarography. Journal of applied physiology 6, 189-193 (1953).

  • Horwitz, O., Sayen, J., Sheldon, W. & Kuo, P. Experimental studies of intramyocardial oxygen tension: increases consequent on breathing pure oxygen in normal hearts and at the borders of ischaemic areas. The Journal of clinical investigation 29, 823 (1950).

  • Tobias, J. M. & Retondo, N. Syringe oxygen cathode for measurement of oxygen tension in solution and in respiratory gases. Review of Scientific Instruments 20, 519-523 (1949).

  • Edzwald, J. K., Walsh, J. P., Kaminski, G. S. & Dunn, H. J. Flocculation and air requirements for dissolved air flotation. Journal (American Water Works Association), 92-100 (1992).

Oxygen

Ozone

  • Hayakumo, S. et al. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells in -vitro studies. Science and Technology of Advanced Materials 15, 055003 (2014).

  • Inatsu, Y. et al. Effectiveness of stable ozone microbubble water on reducing bacteria on .the surface of selected leafy vegetables. Food Science and Technology Research 17, 479-485 (2011)

  • Hayakumo, S., Arakawa, S., Mano, Y. & Izumi, Y. Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clinical oral investigations 17, 379-388 (2013).

  • Roth, J. A. & Sullivan, D. E. Solubility of ozone in water. Industrial & Engineering Chemistry Fundamentals 20, 137-140 (1981).

  • Buchan, K. A., Martin-Robichaud, D. J. & Benfey, T. J. Measurement of dissolved ozone in seawater: a comparison of methods. Aquacultural Engineering 33, 225-231 (2005).

  • Berdichevsky, Y., Khandurina, J., Guttman, A. & Lo, Y.-H. UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical 97, 402-408 (2004).

  • Kawashima, M. et al. [abstract] Irrigation therapy using ozone nanobubble water in conjunction with hyperbaric oxygen therapy. (2011).

  • Takahashi, M., Chiba, K. & Li, P. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. The Journal of Physical Chemistry B 111, 11443-11446 (2007).

Anions

  • 1. Bracken TD: Small Air Ion Properties. In Air Ions: Physical and Biological Aspects. Edited by Charry JM, Kavet R. Boca Raton: CRC Press; 1987.

  • 2. Bracken TD, Johnson GB: Small Air Ion Environments. In Air Ions: Physical and Biological Aspects. Edited by Charry JM, Kavet R. Boca Raton: CRC Press; 1987:13–21.

  • 3. Chalmers JA: Atmospheric Electricity. New York: Pergamon Press; 1967.

  • 4. Flory R, Ametepe J, Bowers B: A randomized, placebo-controlled trial of bright light and high-density negative air ions for treatment of Seasonal Affective Disorder. Psychiatry Res 2010, 177(1 –2):101 –108.

  • Goel N, Etwaroo GR: Bright light, negative air ions, and auditory stimuli produce rapid mood changes in a student population: a placebo-controlled study. Psychol Med 2006, 36(9):1253–1263

  • Terman M, Terman JS: Treatment of seasonal affective disorder with a high-output negative ionizer. J Altern Complement Med 1995, 1 (1):87–92.

  • Terman M, Terman JS: Controlled trial of naturalistic dawn simulation and negative air ionization for seasonal affective disorder. Am J Psychiatry 2006, 163(12):2126–2133.

  • 8. Terman M, Terman JS, Ross DC: A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch Gen Psychiatry 1998, 55(10):875–882.

  • Malik M, Singh K, Singh M: Effect of negative air ions on physiological and perceived psychological stress during computer operation. Int J Environment and Health 2010, 4:67–77.

  • Nakane H, Asami O, Yamada Y, Ohira H: Effect of negative air ions on computer operation, anxiety, and salivary chromogranin A-like immunoreactivity. Int J Psychophysiol 2002, 46(1):85–89.

  • 11. Assael M, Pfeifer Y, Sulman FG: Influence of artificial air ionization the human electroencephalogram. Int J Biometeorol 1974, 18(4):306–372.

  • 12. Buckalew LW, Rizzuto A: Subjective response to negative air ion exposure. Aviat Space Environ Med 1982, 53(8):822–823.

  • 13. Lips R, Salawu JT, Kember P, Probert SD: Intermittent exposures to enhanced air-ion concentrations for improved comfort and increased productivity? Applied Energy 1987, 28:83–94.

  • 14. Misiaszek J, Gray F, Yates A: The calming effects of negative air ions on manic patients: a pilot study. Biol Psychiatry 1987, 22(1):107–110.

  • 15.  Charry JM, Hawkinshire FB: Effects of atmospheric electricity on some substrates of disordered social behavior. J Pers Soc Psychol 1981, 41 (1):185–197.

  • 16. Giannini AJ, Jones BT, Loiselle RH: Reversibility of serotonin irritation syndrome with atmospheric anions. J Clin Psychiatry 1986, 47(3):141 –143.

  • 17. McGurk F: Psychological effects of artificially produced air ions. Am J Phys Med 1959, 38:136–137.

  • 18. Hedge A, Collis MD: Do negative air ions affect human mood and performance? Ann Occup Hyg 1987, 31 (3):285–290.

  • 19. Yaglou CP: Are Air Ions a Neglected Biological Factor? In The Air We Breathe-A Study of Man and His Environment. Edited by Farber SM, Wilson R.
    Springfield, Illinois: Charles C. Thomas; 1961.

  • 20. Charry JM: Biological Effects of Air Ions: A Comprehensive Review of Laboratory and Clinical Data. In Air Ions: Physical and Biological Aspects. Edited by Charry JM, Kavet R. Boca Raton: CRC Press; 1987:91 –160.

  • 21. Bailey WH, Bissell M,  Brambl RM, Dorn CR, Hoppel WA, Sheppard AR, Stebbings JH: A Health and Safety Evaluation of the + / - 400 KV Powerline. St. Paul, MN: Minnesota Environmental Quality Board; 1982.

  • 22. Goel N, Terman M, Terman JS, Macchi MM, Stewart JW: Controlled trial of bright light and negative air ions for chronic depression. Psychol Med 2005, 35(7):945–955.

  • 23. Rothstein H, Sutton A, Borenstein M: Publication Bias in Meta-Analysis: Prevention, Assessments, and Adjustments. John Wiley and Sons, Ltd; 2005.

  • 24. Dauphinais DR, Rosenthal JZ, Terman M, DiFebo HM, Tuggle C: Rosenthal NE: Controlled trial of safety and efficacy of bright light therapy vs. negative air ions in patients with bipolar depression. Psychiatry Res 2012, 196(1):57–61.

  • 25. Dantzler BS, Martin BG, Nelson HS: The effect of positive and negative air ions on bronchial asthma. Ann Allergy 1983, 51 (3):362–366.

  • 26. Giannini AJ, Giannini JD, Melemis S, Giannini JN: Treatment of acute mania with ambient air anionization: variants of climactic heat stress and serotonin syndrome. Psychol Rep 2007, 100(1):157–163.

  • 27. Silverman D, Kornblueh IH: Effect of artificial ionization of the air on the electroencephalogram; preliminary report. Am J Phys Med 1957, 36(6):352–358.

  • 28. Baron RA, Russell GW, Arms RL: Negative ions and behavior: impact on mood, memory, and aggression among type A and type B persons. J Pers Soc Psychol 1985, 48(3):746–754.

  • 29. Deleanu M, Stamatiu C: Influence of aeroionotherapy on some psychiatric symptoms. Int J Biometeorol 1985, 29(1):91 –96.

  • 30. Giannini AJ, Jones BT, Loiselle RH, Price WA: Anxiogenic effects of generated ambient cations--a preliminary study. Int J Psychiatry Med 1986–87, 16(3):243–248.

  • 31. Harmer CJ, Charles M, McTavish S, Favaron E, Cowen PJ: Negative ion
    treatment increases positive emotional processing in seasonal affective disorder. Psychol Med 2012, 42(8):1605–1612.

  • 32. Malcolm CP, Cowen PJ, Harmer CJ: High-density negative ion treatment increases positive affective memory. Psychol Med 2009, 39(11):1930–1932.

  • 33. Reilly T, Stevenson IC: An investigation of the effects of negative air ions on responses to submaximal exercise at different times of day. J Hum Ergol (Tokyo) 1993, 22(1):1 –9.

  • Human performance and mood. Hum Factors 1981, 23(5):633–636.34. Tom G, Poole MF, Galla J, Berrier J: The influence of negative air ions on National Comorbidity Survey Replication. Arch Gen Psyc

  • 35. Watanabe I, Noro H, Ohtsuka Y, Mano Y, Agishi Y: Physical effects of negative air ions in a wet sauna. Int J Biometeorol 1997, 40(2):107–112.

  • 36. Giannini AJ, Jones BT, Loiselle RH, Price WA: Anxiogenic effects of generated ambient cations--a preliminary study. Int J Psychiatry Med 1986–1987, 16(3):243–248.

  • 37. Albrechtsen O, Clausen V, Christensen FG, Jensen JG, Moller T: The influence of small atmospheric ions on human well-being and mental performance. Int J Biometeorol 1978, 22(4):249–262.

  • 38. Hawkins LH: The influence of air ions, temperature, and humidity on subjective wellbeing and comfort. J Environ Psych 1981, 1:279–292.

  • 39. Iwama H, Ohmizo H, Obara S: The relaxing effect of negative air ions on ambulatory surgery patients. Can J Anaesth 2004, 51 (2):187–188.

  • 40. Finnegan MJ, Pickering CA, Gill FS, Ashton I, Froese D: Effect of negative ion generators in a sick building. Br Med J (Clin Res Ed) 1987, 294 (6581):1195–1196.

  • 41. Harmer CJ, Cowen PJ, Goodwin GM: Efficacy markers in depression. J Psychopharmacol 2011, 25(9):1148–1158.

  • 42. Harmer CJ, O'Sullivan U, Favaron E, Massey-Chase R, Ayres R, Reinecke A, Goodwin GM, Cowen PJ: Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry 2009, 166(10):1178–1184.

  • 43. Leppamaki S, Haukka J, Lonnqvist J, Partonen T: Drop-out and mood improvement: a randomized controlled trial with light exposure and physical exercise [ISRCTN36478292]. BMC Psychiatry 2004, 4:22.

  • 44. Loving RT, Kripke DF, Shuchter SR: Bright light augments antidepressant effects of medication and wake therapy. Depress Anxiety 2002, 16(1):1 –3.

  • 45. Partonen T, Leppamaki S, Hurme J, Lonnqvist J: Randomized trial of physical exercise alone or combined with a bright light on mood and health-related quality of life. Psychol Med 1998, 28(6):1359–1364.

  • 46. Wileman SM, Eagles JM, Andrew JE, Howie FL, Cameron IM, McCormack K, Naji SA: Light therapy for seasonal affective disorder in primary care: a randomized controlled trial. Br J Psychiatry 2001, 178:311 –316.

  • 47. Charry JM: Biological effects of small air ions: a review of findings and methods. Environmental Research 1984, 34:351 –389.

  • 48. Weinberger AH, McKee SA, Mazure CM: Inclusion of women and gender-specific analyses in randomized clinical trials of treatments for depression. J Womens Health (Larchmt) 2010, 19(9):1727–1732.

  • 49. Bailey WH, Charry JM: Acute exposure of rats to air ions: Effects on the regional concentration and utilization of serotonin in the brain.
    Bioelectromagnetics 1987, 8:173–181.

  • 50. Charry JM, Bailey WH: Regional turnover of norepinephrine and dopamine in rat brain following acute exposure to air ions. Bioelectromagnetics 1985, 6:173–185.

  • 51. Dowdall M, De Montigny C: Effect of atmospheric ions on hippocampal pyramidal neuron responsiveness to serotonin. Brain Res 1985, 342(1):103–109.

  • 52. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J: An inventory for measuring depression. Arch Gen Psychiatry 1961, 4:561 –571.

  • 53. Radloff LS: The CES-D scale: A self-report depression scale for research in the general population. Appl Phsychological Measurement 1977, 1:385–401.

  • 54. Zung WW: A self-rating depression scale. Arch Gen Psychiatry 1965, 12:63–70.

  • 55. Afifi M: Gender differences in mental health. Singapore Med J 2007, 48(5):385–391.

  • 56. McRae K, Ochsner K, Mauss I, Gabrieli J, Gross J: Gender differences in emotion regulation: An fMRI study of cognitive reappraisal. Group Processes & Intergroup Relations 2008, 11:143–162.

  • 57. Vigil JM: A socio-relational framework of sex differences in the expression of emotion. Behav Brain Sci 2009, 32(5):375–390. discussion 391 –428.

  • 58. Demyttenaere K, Bruffaerts R, Posada-Villa J, Gasquet I, Kovess V,  Lepine JP, Angermeyer MC, Bernert S, de Girolamo G, Morosini P, et al: Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA 2004, 291 (21):2581 –2590.

  • 59. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the  62(6):593–602.

  • 60. Kessler RC, Merikangas KR, Berglund P, Eaton WW, Koretz Mild disorders should not be eliminated from the DSM Psychiatry 2003, 60(11):1117–1122.

  • 61. World Health Organization: Conquering Depression. Lyons: Organization, Regional Office for Southeast Asia; 2001.

bottom of page